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1  | KE Y ELEMENTS IN T YPE 2 IMMUNE 
RESPONSES

Both allergic disease and helminth infection are associated with 
type 2 immune responses. Type 2 immune responses are generally 
required for control of parasite infections and have the advantage 
of causing reduced collateral damage compared with Th1 or Th17 
immune responses. Conversely, in allergy, type 2 responses cause 
pathology which can be debilitating or even fatal. Models using mice 
deficient in key elements of type 2 immune pathways have shown 
the critical role of these responses in parasite killing/ejection, heal-
ing, metabolic changes and in allergic pathology.

Type 2 immunity is characterized by the development of antigen-
specific IgE immunoglobulins and Th2 cells producing IL-4, IL-5 and 
IL-13. Upon recognition of antigen, Th2 cell cytokine production 
leads to the activation of eosinophils, while cross-linking of IgE on 
primed mast cells leads to their degranulation. Together these effec-
tor immune cells are responsible for the clinical symptoms of allergic 
diseases such as atopic dermatitis, asthma and food allergy.

Interestingly, in both chronically helminth-infected people 
and individuals who have experienced repeated clinical or en-
vironmental exposure to allergen,1 high antigen-specific IgG4 
levels can be found, as well as increased circulating levels of reg-
ulatory T cells (Treg) and regulatory B cells (Breg), producing IL-10 
and TGF-β.2,3 Thus, the type 2 adaptive immune response is ca-
pable of being tolerized, either through exogenous factors acting 
on adaptive immune cells, intrinsic exhaustion of those cells or 
changes in the innate immune system which is required for their 
activation.

Dendritic cells (DCs) are an innate immune population absolutely 
required for the development of optimal effector Th cell immune 
responses, including Th2 responses.4,5 DCs are intimately associ-
ated with barrier sites such as the lungs and will take up antigens 
from within and beyond the epithelial barrier. Upon detection of 
a helminth infection or an environmental allergen,6 DCs become 
activated and migrate to the draining lymph nodes, presenting an-
tigens to T cells and potentially inducing a Th2 immune response. 
Although the critical involvement of DCs in Th2 development is 
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Summary
Type 2 immune responses are most commonly associated with allergy and helminth 
parasite infections. Since the discovery of Th1 and Th2 immune responses more than 
30 years ago, models of both allergic disease and helminth infections have been use-
ful in characterizing the development, effector mechanisms and pathological conse-
quences of type 2 immune responses. The observation that some helminth infections 
negatively correlate with allergic and inflammatory disease led to a large field of re-
search into parasite immunomodulation. However, it is worth noting that helminth 
parasites are not always benign infections, and that helminth immunomodulation can 
have stimulatory as well as suppressive effects on allergic responses. In this review, 
we will discuss how parasitic infections change host responses, the consequences for 
bystander immunity and how this interaction influences clinical symptoms of 
allergy.
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clear, the precise signals that lead to priming of a Th2-inducing DC 
are incompletely characterized. In recent years, the importance of 
epithelial-derived cytokines such as interleukin-25 (IL-25), IL-33 and 
thymic stromal lymphopoietin (TSLP) in allergy and parasitic infec-
tion has become appreciated.7 These cytokines can act directly on 
DCs, skewing resultant responses to Th2, and also directly activate 
type 2 innate lymphoid cells (ILC2s), inducing a rapid innate type 2 
response.

ILC2s are innate lymphocytes, lacking antigen-specific receptors, 
which produce large amounts of type 2 cytokines IL-5, IL-13 and IL-9, 
as well as proresolving factors amphiregulin8 and IL-10.9 Activated 
ILC2s also express class II MHC, can present peptide antigen and can 
supply IL-4R signals in type 2 response initiation.10

Thus, type 2 innate epithelial cell cytokines, DC and ILC2s are in-
volved in the earliest responses to allergens and helminth parasites, 
in initiation of the Th2 immune response, and in amplification of al-
lergic and antiparasite immunity. However, antigen specificity and 
the control of ongoing immune responses are critically dependent 
on adaptive immunity.

2  | HELMINTH INFEC TIONS, DAMAGE 
AND T YPE 2 IMMUNE RESPONSES

While type 2 immune responses have clear pathological roles in al-
lergy, they are generally beneficial in helminth infections. Increased 
susceptibility to a range of intestinal and tissue-dwelling parasites 
can be seen in mice lacking essential elements of the type 2 re-
sponse pathway.11 Likewise, in human populations, single nucleotide 
polymorphisms (SNPs) in type 2 response elements such as IL-13 and 
STAT-6, and immunoregulatory elements IL-10 and TGF-β correlate 
with both decreased susceptibility to allergy and increased suscepti-
bility to parasitic infection.12-14

Many helminth species remain in the host for a prolonged time, 
and type 2 responses may be more beneficial for the survival and 
integrity of the host than the more inflammatory Th1/Th17 alter-
native. Indeed, asymptomatic infections with, for example filarial 
worms are associated with type 2 responses,15 whereas in individu-
als suffering from helminth infections linked to pathology and clinical 
symptoms, Th1 or Th17 cell responses are often found.16-18 In many 
parasitic infections, sterile immunity is not common: most individu-
als living in endemic areas are constantly reinfected, even after drug-
mediated clearance of parasites.19 As a consequence, host immune 
responses in endemic areas are often characterized as a “modified 
Th2” response that results in control (but not clearance) of parasite 
load, low-level parasite transmission and minimal host pathology: an 
acceptable host/parasite compromise.

Tissue damage caused by helminth infections is also a pow-
erful stimulus for type 2 responses, which in turn lead to a rapid 
type 2 response-mediated healing phenotype.20 For example, 
in the lung, type 2 immune responses are important in healing 
damage caused by migrating Nippostrongylus brasiliensis larvae, 
while recruiting eosinophils that damage larvae, hamper their 

fecundity and fertility upon arrival in the gut, leading to an early 
expulsion.11 However, type 2 responses may also cause pathol-
ogy due to aberrant healing, such as in the case of fibrotic granu-
lomas formed around schistosome eggs. These granulomas cause 
mild to more severe pathology, linked to local fibrotic tissue, liver 
and splenomegaly, and an increased risk to develop cancer in the 
liver or the bladder, depending on the species.21 Thus, depending 
on context and infecting species, parasite products can induce 
epithelial cell proliferation, encourage healing, control fibrosis22 
and cause transformation and cancerous growth.23

In the absence of helminth infection, type 2 responses are often 
perceived to be only involved in pathological allergic responses, 
ultimately leading to decreased lung function and airway hyperac-
tivity in asthma and rhinitis,24 pruritus (itching) and damage to the 
skin barrier in atopic dermatitis,25 and itching, pain and/or swelling 
of the mouth, pharynx and oesophagus, diarrhoea and abdominal 
pain in food allergy.26 However, type 2 responses in the absence 
of helminth infections can also have beneficial roles: circulating IgE 
specific to venom toxins, which can cause dangerous anaphylaxis on 
exposure, can also be protective with release of mast cell proteases 
that degrade venom toxins and counteract the venom’s detrimen-
tal effects.27 During pregnancy, the type 2 cytokine milieu in the 
womb protects the “non-self” foetus from abortion (which con-
versely is linked to increased Th1/17 responses).28 Finally, perinatal 
type 2 responses in the lung are required for establishment of lung 
homoeostasis and development of anti-inflammatory type 2 mac-
rophages.29 Therefore, just as there is no such thing as “weeds” in a 
garden (just plants in the wrong place) perhaps there is no such thing 
as a “bad” immune response, just inappropriate in its context. How 
parasites modulate these useful and/or pathological responses, and 
what happens when the balance is perturbed, will be covered in the 
next sections.

3  | TALES OF WORMS IN MEN

In the 1970s, the “hygiene hypothesis” was proposed as an explana-
tion for the steep and alarming rise in the prevalence of childhood 
allergies and asthma among urban, Westernized societies. The hy-
giene hypothesis links changes in housing, sanitation and health care 
to increased allergic disease and proposes that this is in part due to 
reduced endemic infections. The prevalence of parasitic infections 
in particular has been drastically reduced in Westernized societies 
over the last century and is therefore proposed to be an important 
contributing factor in this hypothesis. Multiple epidemiological stud-
ies have been used to support this hypothesis by indicating that in 
helminth-endemic rural areas relatively few people have allergic 
symptoms.30,31 The fact that some local African languages contain 
no words to describe allergic symptoms could support this hypoth-
esis, indicating that allergic diseases have never been a problem 
among these populations.32

However, an examination of the many population studies of 
the past 30 years either by meta-analyses33,34 or in some excellent 
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systematic reviews35,36 shows that the direction of the effect by 
helminth infections is far from consistent. For example, while hook-
worm infections were associated with a protective effect against 
asthma, other helminths like Trichuris trichiura, Enterobius ver-
micularis and Strongyloides stercoralis did not show any effect, and 
conversely Ascaris lumbricoides infection increased the risk of devel-
oping asthma and wheeze.33 Greater consensus was observed re-
garding protection to atopic sensitization and allergic skin reactivity, 
although the outcome varied with the allergen studied.34-36

Similarly, studies using anthelmintic treatment of helminth-
endemic populations show mixed results (for a full overview, see 
Wammes, 201435)—some show an increased frequency of allergen 
skin prick test (SPT) after worm clearance,37 while others did not 
observe any differences between treatment and control groups 
within one or 2 year time frames.38 Part of the inconsistent find-
ings and dissimilarities in conclusion in the epidemiological and in-
terventional studies may be explained by variations in factors such 
as the age of the population studied, age of helminth exposure (and 
consequent early-life immune imprinting) and the infectious bur-
den, endemic parasite species and chronicity of infection, or dif-
ferences in study parameters such as clinical symptoms in asthma, 
rhinitis or eczema or methods used to measure allergen sensitiza-
tion (SPT versus allergen-specific IgE).35,39 Epidemiological studies 
applying antihelminthic treatment during pregnancy provide an 
interesting approach to evaluate the relationship between hel-
minths, early immune priming and allergy: these show an increased 
risk of early-life eczema in babies of treated mothers37,40; however, 
a 9-year follow-up showed that this effect was not maintained to 
later life.41

In contrast to human studies, experiments in mice showed 
more consistent findings in the prevention of allergic airway in-
flammation by a wide range of helminth species: N. brasilien-
sis,42 Heligmosomoides polygyrus,43 Litomosoides sigmodontis,44 
Schistosoma mansoni,45 Trichinella spiralis46 and Schistosoma japon-
icum.47,48 Interestingly, transmaternal protection against allergic 
airway inflammation by helminth infection in mice implied that this 
was dependent on the phase of the infection during pregnancy: 
offspring from schistosome-infected females were protected if 
they had mated during the initial Th1 phase, or the chronic immune-
regulatory phases of schistosome infection, but conversely disease 
was exacerbated if mating occurred during the high Th2 phase of 
infection (coinciding with egg deposition).49 This may further com-
plicate assessment of human population studies, as protection 
against allergy may depend on far more complicated interactions 
than simple presence of infection, but also prenatal stimuli and 
phase of infection.

4  | HELMINTH INTER AC TIONS WITH 
OTHER INFEC TIONS AND THE MICROBIOTA

Severe respiratory syncytial virus (RSV) and/or rhinovirus 
(RV) infection in early life gives a sevenfold increased risk of 

developing asthma,50 while asthma exacerbations are associ-
ated with concurrent respiratory viral infection in up to 80% of 
cases.51 Furthermore, in experimental RV infections of asthmatic 
volunteers, IL-33 and other type 2 cytokines were released into 
the airways, correlating with severity of asthma exacerbation.52 
Parasite products can suppress IL-33 release53,54; thus, they could 
directly suppress viral proallergic responses, or, via suppression 
of IL-33 release, lead to increased antiviral immune responses.55 
Interestingly, the interactions between helminths and viruses have 
recently received a great deal of attention. For example, H. poly-
gyrus infection leads to upregulation of type 1 interferons in the 
gut and lung, and suppression of respiratory syncytial virus (RSV) 
titre, with reduced inflammation and lung pathology in a mouse 
model.56 Likewise, S. mansoni infection suppresses lung pathol-
ogy during pneumonia virus of mice (PVM) or influenza infection 
and reduced viral titre.57 These murine studies suggest that hel-
minth parasites could suppress titre and/or inflammation in viral 
lung infections with a subsequent effect of reducing the risk of 
viral-induced development or exacerbation of asthma. Though it is 
yet unclear whether similar effects can be found in humans, sev-
eral recent virus-helminth coinfection studies have also reported 
worsening of viral infection through helminth-mediated immu-
nosuppression; for example, H. polygyrus or S. mansoni resulted 
in murine γ-herpesvirus reactivation,58 while T. spiralis infection 
resulted in impaired immunity to murine norovirus.59 Notably, in 
both cases, suppression of antiviral immunity was dependent on 
STAT-6 and type 2 immune responses. Therefore, suppression of 
viral responses by helminth parasites depends on viral species and 
outcomes are dependent on immune mechanisms which control 
viral proliferation and pathology.

Helminths not only change the response to other infectious 
agents within the host but can also affect the balance of commensal 
organisms with which they share an environment. The host genome 
and the total diversity of the microbiota (the “microbiome”) are im-
portant in mediating or reflecting health and disease in the intes-
tine, and in other barrier sites such as the lung and skin. Changes in 
the gut and lung microbiomes are seen in allergic diseases such as 
asthma,60 reflecting the immune axis between these mucosal sites or 
transfer of bacterial populations through processes such as inhala-
tion of airborne bacteria, bacterial migration along mucosal surfaces 
and microaspiration of gastric contents.61

Although many studies of the microbiome focus on faecal con-
tents, it is important to note that intestinal helminths infect spe-
cific niches within the intestine: that is Trichuris spp in the large 
intestines, and human hookworms, H. polygyrus and N. brasiliene-
sis in the small intestines. In humans living in helminth-endemic 
areas and during experimental helminth infection, helminth in-
fection is associated with increased diversity and abundance 
of the microbiome.62-65 Although it has not been demonstrated 
whether these differences are related to differences in lifestyle 
and hygiene or causally linked to current helminth infection, the 
fact that changes in the microbiota are partially abrogated on an-
thelmintic treatment supports the latter hypothesis.63 In several 
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mouse models, intestinal helminth infections induced a decreased 
prevalence of commensals associated with inflammation66,67 and 
increase in commensals associated with immune regulation.63,68 
This is proposed to be an active process, mediated by secreted 
antimicrobials from the parasite (such as host defence peptides),69 
or mediated by (type 2) immune responses directed against or 
modulated by the parasite.63,70 Consequently, changes in the 
microbiota (due to, eg changes in diet) and microbial metabolite 
levels (such as short-chain fatty acids) mediate changes in allergic 
responsiveness.71 Interestingly, a recent study also found altered 
fatty acid production by the microbiota of H. polygyrus-infected 
mice and their additional role in protection against allergic airway 
inflammation.72

5  | RE WORMING THE WEST

The growing support for the idea that helminth infections suppress 
inflammatory responses led to the proposal of using helminth in-
fections as therapeutic agents in these diseases. In the first clinical 

trials of “helminth therapy,” patients with inflammatory bowel dis-
ease (Crohn’s disease or ulcerative colitis) were treated with eggs 
(ova) from the porcine intestinal parasite Trichuris suis (TSO), leading 
to significant reduction in symptom scores in a series of small tri-
als.73-75 Likewise, an observational study in Argentina showing that 
multiple sclerosis (MS) patients went into remission after infection 
with environmentally acquired helminths,76,77 and when treated 
to clear their helminth infections, their autoimmune disease was 
again reactivated.78 Finally, a series of studies have used human 
hookworm (Necator americanus) in patients with coeliac disease: al-
though initial studies showed no clinically significant difference in 
responses to gluten challenge,79 inflammatory immune responses in 
the gut were reduced and skewed towards a Th2 response.80,81 In 
a follow-up open-label study using escalating doses of gluten after 
hookworm infection, no deterioration in clinical pathology was 
seen in hookworm-infected subjects82 giving grounds for further 
studies.

These initial studies formed the basis of clinical trials treating pa-
tients with IBD or multiple sclerosis in the United States and Europe 
with TSO. However, to date, these trials have shown disappointing 

F IGURE  1 Helminth infections are associated with both promoting and reducing allergic symptoms. Helminths interact strongly with the 
host immune system, but the type of response is heavily influenced by the chronicity of infection, the species involved and/or worm burden, 
ultimately tipping the balance towards more detrimental and type 2 response or beneficial and regulatory responses. Subsequently, this 
balance is further influenced by cofactors such as host genetics, socioeconomic status, coinfections and the composition and diversity of the 
microbiome leading to the development of clinical symptoms and allergies or tolerance in the host. Image is adapted from Servier Medical 
ART
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response rates and no significant reduction compared with placebo 
controls.83-85

Of most relevance to this review, studies using hookworm infec-
tion to treat asthma or TSO to treat allergic rhinitis patients have also 
been undertaken. However, no change in clinical measurements was 
seen in either study,86 and although type 2 specific responses were 
detected against the hookworm, no regulatory immune responses 
were found.87

Thereby, the promise of helminth therapy has so far not trans-
lated to a practicable treatment for human disease. Reasons for 
this may well include difference between prevention and cure (ie 
parasitic infection may need to precede allergic sensitization, and 
effect could be in utero49), the difference between infection and 

administration of parasite products (most of the therapeutic ef-
fects in mouse models were based on the application of helminth 
products rather than a full infection), the single parasite infective 
dose given (which is generally determined by that which causes 
no notable side effects, but may therefore be too low and too lit-
tle for functional suppression of pathology) or disease endotypes 
which are responsive or refractory to these treatments, preclud-
ing statistical significance of effects when the disease population 
is taken as a whole.88 Critically, however, the mechanism of ac-
tion of helminth immunomodulation is not well understood, and 
whether this is shared between all helminth infections, or more 
likely unique to each parasitic species, is presently unknown 
(Figure 1).

F IGURE  2  Immune responses during helminth infections. Depending on their life cycle, various helminth species will pass or reside in 
(the proximity of) the lung and the gut. Consequently, damage will occur, leading to the release of alarmin cytokines IL-33, IL-25 and thymic 
stromal lymphopoietin (TSLP) by epithelial cells and tuft cells (gut). These cytokines will act on innate lymphoid cells (ILC)2 and on dendritic 
cells (DCs), which will migrate to the draining lymph node and skew naïve T cells towards polarized Th2 cells, producing the cytokines IL-4, 
IL-5 and IL-13, in a similar fashion as ILC2s. These cytokines are central to the type 2 immune response and drive the isotype switch to IgE 
immunoglobulins, act on eosinophils, mast cells and drive the development of alternatively activated macrophages. All these elements are 
instrumental in worm expulsion but can also promote tissue damage, anaphylaxis and allergic responses towards bystander antigens. These 
responses are balanced by various cells from the regulatory network: for example regulatory T and B cells, regulatory macrophages and 
tolerogenic DCs. These regulatory cells can act on other cell types directly or through the production of anti-inflammatory cytokines IL-10 
and TGF-β, as well as by the induction of anti-inflammatory IgG4, leading to immune tolerance and damage control, but at the same time 
prevent worm expulsion, promoting chronic helminth infections. Image is adapted from Servier Medical ART
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In the following sections, we will focus on mechanisms by which 
type 2 immune responses are suppressed or induced in helminth in-
fections, and how this could affect allergic responses (Figure 2 for 
a schematic overview). A deeper understanding of the interaction 
between helminths and their host will help to translate these mech-
anisms into a better therapeutic approach.

6  | HELMINTHS AND MODUL ATION 
OF ALLERGIC DISE A SE:  THE ROLE OF 
IMMUNOGLOBULINS,  REGUL ATORY CELL S 
AND CY TOKINE INHIBITORS

6.1 | Immunoglobulins

Allergen-specific IgE is the defining characteristic of atopy, and in 
high-income countries, allergen-specific IgE strongly correlates with 
functional allergy measured by SPT reactivity. However, in helminth-
endemic areas (especially rural areas of low socioeconomic status), 
this relationship often breaks down.89,90 Furthermore, multiple 
epidemiological studies have shown a positive association between 
antihelminth IgE (ascariasis, schistosomiasis, filariasis) and wheeze 
and/or atopy.91-95 One of the reasons for discrepancies between IgE 
reactivity (against allergen or helminth) and allergy in high-income 
versus helminth-endemic areas might be due to cross-reactivity 
of antihelminth IgE to certain allergens. For example, IgE against 
tropomyosin from Onchocerca volvulus cross-reacts with the tropo-
myosin of house dust mite Der p 10, boosting allergic responses 
to HDM.96,97 While IgE against carbohydrates on Schistosoma egg 
glycoproteins can cross-react with cross-reactive carbohydrate de-
terminants (CCDs) on peanut antigens, due to the low affinity of 
this IgE, cross-linking and degranulation of carbohydrate-specific 
IgE-coated mast cells do not occur. Therefore, these cross-reactive 
responses have the potential to block clinical responses to aller-
gens like peanut.98 Further studies are needed to clarify whether 
high levels of circulating cross-reactive protein or carbohydrate-
specific IgE are instrumental in inducing or preventing allergic (skin) 
reactivity.89

The immunoglobulin isotype IgG4 is often associated with a 
tolerized allergic response following allergen-specific immuno-
therapy, and its production is also increased in many helminth-
infected individuals.99,100 Although there is a growing awareness 
of potentially harmful effects of IgG4 in several IgG4-related sys-
temic diseases,101 it is unclear how this pathogenic role of IgG4 
compares to active tolerance induction to allergens or during hel-
minth infection. Despite these recent reports on IgG4-related dis-
eases, IgG4 antibodies are considered the least inflammatory of all 
isotypes—they do not activate complement, and unlike IgE they do 
not cause degranulation of mast cells. Due to the unique ability of 
IgG4 to swap antigen-binding arms, it is regarded as functionally 
monovalent and thus will not cause immune complex formation.100 
Thus, in this context, its main function appears to be a blocking 
one, and possibly instrumental in preventing IgE-mediated in-
flammation. High levels of anti-Ascaris IgG4 have been negatively 

associated with allergen SPT positivity,102 while in a S. mansoni-
endemic area—although higher levels of both IgE and IgG4 were 
found in infected individuals—a higher ratio of IgE to IgG4 pre-
dicted clinical allergic symptoms,103 just as in allergen-specific im-
munotherapy.104 As many helminth products are homologous to 
common allergens, IgG4 responses raised against helminth prod-
ucts may also bind and block IgE epitopes on allergens, reducing 
responses to allergens and directly reducing SPT responses.105-107 
Mechanistic research into the role of IgE and/or IgG4 is hampered 
by the lack of good experimental animal models, as IgG4 does not 
exist in mice.

6.2 | Regulatory cells

Both regulatory T cells (Tregs) and regulatory B cells (Bregs) are 
important in the control of type 2 immune responses and allergic 
airway inflammation in mouse models.108 In individuals tolerized to 
allergens through high-dose environmental exposure or allergen-
specific immunotherapy, levels of Tregs and Bregs are increased and 
required for maintenance of tolerance.108 Both Tregs and Bregs can 
produce the immunosuppressive cytokines IL-10 and TGF-β, which 
can suppress damaging inflammation.109

IL-10 and TGF-β are also instrumental in immunosuppressive 
effects in a number of different helminths, including Onchocerca, 
Ascaris, Trichuris or Toxocara spp,110-112 and appear to be important in 
suppression of allergic responses. Indeed, IL-10 was linked to a lower 
risk of allergic skin reactivity in schistosome-infected Gabonese 
schoolchildren.113 Elevated numbers of circulating FOXP3+ CD25+ 
Treg cells have been demonstrated in Schistosoma haematobium114 
and filaria-infected people,115 while anthelmintic treatment of S. hae-
matobium or geohelminth-infected individuals leads to a normaliza-
tion of circulating FOXP3 Treg or PD-1 and CTLA-4-expressing CD4+ 
T cells116 and/or subsequent increased in vitro cytokine responses to 
both helminth and bystander antigens.114 Similarly, increased levels 
of Breg cells have been detected in helminth-infected MS patients77 
and in S. haematobium-infected Gabonese people.45,117

Also in mouse models of allergic airway inflammation (AAI), both 
helminth-induced Treg and Breg cells are instrumental in preventing 
disease symptoms. For example, Tregs from H. polygyrus or T. spiralis-
infected mice transferred protection against airway pathology in mod-
els of experimental airway allergy.43,46,118 Heligmosomoides polygyrus 
excretory/secretory products (HES) can induce Tregs in vitro, and 
transfer of HES-induced Tregs can replicate the suppressive capacity 
of the parasitic infection.119 Recently, a TGF-β mimic (Hp-TGM) was 
identified in HES, a protein which alone can induce Tregs in vitro.120,121

Likewise, mesenteric lymph node CD23hi B cells from 
H. polygyrus-infected mice suppress allergic airway inflammation in 
an IL-10-independent manner,122 while splenic marginal zone CD1dhi 
B cells from S. mansoni-infected mice induced protection in an IL-
10 and Treg cell-dependent manner upon adoptive transfer.45,123 
Analysis of splenic CD1dhi B cells from schistosome-infected mice 
showed increased Tlr7 expression, and TLR-7 ligation increased the 
IL-10 production in splenic CD1dhi B cells from naïve animals.124 
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Adoptive transfer of TLR-7 stimulated splenic CD1dhi B cells reduced 
allergic airway inflammation through the recruitment of regulatory T 
cells. Further mechanistic insight was recently supplied by the find-
ing that the S. mansoni-derived molecule IPSE/alpha-1 could drive 
Breg differentiation in vitro.125 In addition, and separately to “con-
ventional” IL-10-producing Bregs, S. mansoni-infected mouse lungs 
also contain a nonclassical regulatory B-cell population that could 
also inhibit AAI by reducing allergen-specific Th2 responses, in an 
IL-10 and Treg-independent manner.126

These studies point towards an important role for helminth-
induced Tregs and Bregs in the suppression of allergen-specific 
immune responses. However, part of these processes may also be 
accelerated by exhausted and hyporesponsive T- and B-cell re-
sponses.127-130 For example, in murine L. sigmodontis infection, 
Th2 cells upregulate GITR, CTLA-4 and PD-1 and become hypore-
sponsive to stimuli,131-134 while in chronic murine schistosome in-
fection, hyporesponsive Th2 cells were linked to the anergy marker 
GRAIL.135 Thus, in chronic Th2 dominated models, such as helminth 
infection, Th2 cells become hyporesponsive and anergic. This is to 
the benefit of both the parasite (allowing survival) and, often, the 
host (preventing inflammatory damage). Likewise, in allergen immu-
notherapy, through either anergy or deletion, Th2 cells decrease in 
number, reducing IL-4, IL-5 and IL-13 production.136 Thus, hypore-
sponsive Th2 cells may share similar features in chronic helminth in-
fection and tolerized allergic responses, however, whether this is an 
active process, and whether helminth infection causes hyporespon-
siveness in bystander allergic responses in vivo is presently unclear.

6.3 | Myeloid cells

Dendritic cells (DC) are the critical link between innate and adaptive 
immunity and decide on the development of effector versus regula-
tory T-cell development based on their ontogeny, tissue location and/
or environmental signals present. Different myeloid DC subsets—con-
ventional type 1 (cDC1) and type 2 dendritic cells (cDC2)—can be dis-
tinguished on the basis of several surface expression markers recently 
identified in an unbiased approach across tissues and species137,138. 
While cDC1 can produce high levels of IL-12p70 and prime cytotoxic 
CD8 T-cell and antitumour responses, cDC2 can boost both Th17 or 
Th2 cells depending on the environment and show superior allergen 
uptake compared to cDC1.139-144 Interestingly, cDC1 can also have 
a tolerogenic function in allergy models: they induce Treg cells via 
retinoic acid and peroxisome proliferator-activated receptor gamma 
(PPARγ) and limit inflammation in a HDM and ovalbumin model of aller-
gic airway inflammation145 and during schistosome infections.146 In pa-
tients with asthma, increased numbers of DCs are found in the blood, 
induced sputum and bronchoalveolar lavage upon allergen challenge, 
but only cDC2 migrated into the bronchial tissue.147 The DCs express 
more OX-40L, a molecule involved in Th2 polarization148 and more 
FcεRI.149 In the absence of DCs, type 2 responses in allergy models are 
profoundly abrogated,150 but other myeloid cell populations may also 
be important to support Th2 cell development in either allergy models 
or helminth infection, like monocyte-derived dendritic cells.140,141

Macrophages differentiate into alternatively activated or M2 
macrophages in response to IL-4 and IL-13. They can be distinguished 
from classically activated or M1 macrophages by the upregulation of 
markers such as RELM-α, Ym1 and arginase and are associated with 
wound healing and parasite killing.11,151 M2 macrophages are also 
anti-inflammatory, producing IL-10 and TGFβ152 and arginase, which 
restrict T-cell function through amino acid starvation153 and sup-
press liver fibrosis in S. mansoni infection.154 Furthermore, retinoid 
acid production by M2 macrophages during S. mansoni infections 
promotes the development of Treg cells at the sites of inflamma-
tion.155 In allergic asthma, macrophages are considered to play a key 
role in inflammatory responses associated with lung injury, fibrosis 
and goblet cell hyperplasia156 and stimulating smooth muscle cell 
contraction and extracellular cell matrix degradation, contributing to 
airway remodelling. Increased numbers of mannose receptor (MR)+ 
macrophages (a surface marker for M2 macrophages) are found in 
the bronchial tissue of allergic asthmatic patients.157

Immature or tolerogenic dendritic cells—induced by immuno-
suppressive drugs or molecules, like vitamin D3158—are potent driv-
ers of regulatory T cells and immune tolerance. The ES products of 
Ancylostoma caninum can suppress immunopathology in mouse mod-
els of colitis.159 Recently, AIP-1 (from the human hookworm N. amer-
icanus) and AIP-2 (from A. caninum) were shown to be suppressive in 
mouse models of colitis160 and asthma161 by a mechanism dependent 
on Treg expansion. Although the full mechanism of action of these 
molecules has yet to be elucidated, it appears that they achieve Treg 
expansion through modulation of dendritic cell responses.161

Likewise, regulatory macrophage populations can express IL-10 
that is instrumental in Treg development and/or suppression of local 
immune responses. Both regulatory DC and macrophages are heav-
ily exploited in immune evasive strategies by various pathogens.162 
This suppression also occurs in vivo, with changes in DC maturation 
status and phenotype and Treg-inducing function during experimen-
tal murine helminth infection,163-165 with helminth product-induced 
macrophage IL-10 expression166,167 and in human helminth-endemic 
populations.168,169 In addition, adoptive transfer of tolerogenic DCs 
from S. japonicum-infected or H. polygyrus-infected mice reduced 
ovalbumin-induced AAI or colitis in uninfected recipients via IL-
10.165,170 Thus, both macrophages and DCs are capable of differen-
tiating into inflammatory or suppressive phenotypes, both pathways 
being prone to helminth immunomodulation.

Both macrophages and DCs are modulated by parasite products 
through pattern recognition receptors (PRR), such as the TLR family 
and the C-type lectin receptors. Helminths secrete many molecules, 
a significant majority of which are decorated with glycans that play 
a role in parasite-host interactions.171 The failure of live hookworm 
or TSO clinical trials has fuelled the interest in the immunomodula-
tory properties of helminth molecules and their glycans as potential 
therapeutic agents. Examples of immunomodulatory glycans or gly-
coproteins in the modulation of dendritic cell function and/or dis-
ease models are described for glycans from Trichuris eggs in TSO, the 
S. mansoni egg glycoprotein, omega-1—a T2 RNase—and the glyco-
protein ES-62 secreted by Acanthocheilonema viteae.172-175
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Other molecules that act on dendritic cell/macrophage function 
and dampen experimental allergic airway inflammation are identi-
fied from Clonorchis sinensis, A. caninum, A. viteae, Brugia malayi and 
Anisakis simplex.161,166,167,176-178 Further studies are needed to clarify 
whether these molecules can also be used in allergic and asthmatic 
patients in a therapeutic setting without the disadvantages of the 
infection itself.

6.4 | Innate lymphoid and epithelial cells

The importance of early, innate, epithelial cell-derived cytokines in 
type 2 response initiation has only recently begun to be understood. 
The epithelial cell cytokines IL-25, IL-33 and TSLP activate ILC2s 
at barrier sites, which secrete large amounts of IL-5, IL-13 and IL-9. 
Recently, it was shown that ILC2s can also be activated to produce 
IL-10, providing a immunoregulatory pathway (similar to that seen in 
T cells) which could be amenable to parasite immunomodulation.9

Proximal epithelial cell responses therefore represent an ideal 
target for intervention, as blocking these cytokines could blunt 
downstream ILC, dendritic cell and T-cell responses. However, as 
these pathways have only recently been characterized, research 
into their suppression remains in its infancy. One exception is the 
IL-33 pathway in H. polygyrus infection, in which multiple parasite 
immunomodulatory factors have been identified. Heligmosomoides 
polygyrus excretory/secretory products (HES) replicate the sup-
pressive effect of parasitic infection in suppression of airway aller-
gic inflammation,179 via abrogation of the earliest ILC2 responses 
to an allergen preparation from Alternaria alternata,53 a clinically 
relevant stimulus. Alternaria allergen administration is a uniquely 
potent stimulus for IL-33 release,180 and HES administration blocks 
the IL-33 pathway through induction of IL-1β (counter-regulating 
IL-25 and IL-33 expression),181 miRNA-containing HES extracellu-
lar vesicles which reduce IL-33 receptor expression, and HpARI, a 
protein in HES which directly binds IL-33, abrogating its release.54

Recently, it was shown that cholinergic neurons activate182-184 
and adrenergic neurons inhibit185 ILC2 responses, while type 2 
cytokines in turn activate neurons,186 forming a new field of neu-
roimmune interactions for future studies, and potential helminth 
modulation.

7  | CONCLUDING REMARKS

Helminth parasites have coevolved with their mammalian hosts for 
millions of years, and in doing so have developed an intimate rela-
tionship. On the one hand, this relationship can be seen as antago-
nistic, with the parasite attempting to subvert immune responses 
to its own ends, while the host immune system attempts to damage 
or kill the parasite. Alternatively, it can be seen as a mutualistic in-
teraction, with parasite immunomodulation expected by the host 
immune system, and in fact required for healthy immune develop-
ment, and avoidance of immune-mediated disease. It is likely that 
both forms of interaction occur, depending on context, parasite 

and environment. “Gene-environment” interactions in allergy 
and helminth infections are further complicated by “infection-
environment” interactions with diet, living conditions depending 
on the socioeconomic status and/or rural versus urbanization sani-
tation, microbiota and coinfections, all of which have roles in the 
response to, and tolerance of, allergenic stimuli. By learning how, 
at the molecular level, these interactions occur; we may be able to 
replicate and tailor beneficial helminth-mediated effects for use 
in allergic disease, in the absence of the deleterious effects that 
come with parasitic infection.
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